COMPARISON OF TREE IMPLEMENTATION, REGRESSION LOGISTICS, AND RANDOM FOREST TO DETECT IRIS TYPES

Siti Mukodimah(1), Chairani Fauzi(2),


(1) (SCOPUS ID : 57200503271, Prodi Sistem Informasi, STMIK Pringsewu)
(2) Institut Informatika dan Bisnis Darmajaya
Corresponding Author

Abstract


Iris is a genus of 260-300 species of flowering plants with striking flower colors and has a dominant color in each region. The name iris is taken from the Greek word for rainbow, which is also the name for the Greek goddess of the rainbow, Iris. The number of types of iris plants with almost the same physical characteristics, especially in the pistil and crown, causes the misdetection of iris plant types. Iris plants are deliberately used because data is already available digitally on the internet and software such as orange and is widely used as a material for classifying objects. This research was conducted to classify iris plant types using three algorithms, namely Tree algorithm, Regression Logistics, and Random Forest. Classification algorithms are a learning method for predicting the value of a group of attributes in describing and distinguishing a class of data or concepts that aim to predict a class of objects whose class labels are unknown. The results showed the largest AUC (Area Under Curve) value obtained by the Random Forest method. AUC accuracy is said to be perfect when the AUC value reaches 1,000 and the accuracy is poor if the AUC value is below 0.500. As for the precision value of the three models used Random Forest has the highest precision value. From the data tests that have been done training and testing can be seen that the level of accuracy of testing of the three models where the Random Forest model is superior as a method for classification of irises.


Keywords


Iris Plant, Tree Algorithm, Logistic Regression, Random Forest, Classification

References


D. M. C. Hermanto, “Analisis Algoritma Clustering,” J. Media Apl., vol. 9, no. 2, pp. 72–84, 2017.

F. Febrianti, M. Hafiyusholeh, and A. H. Asyhar, “Perbandingan Pengklusteran Data Iris Menggunakan Metode K-Means Dan Fuzzy C-Means,” J. Mat. “MANTIK,” vol. 2, no. 1, p. 7, 2016, doi: 10.15642/mantik.2016.2.1.7-13.

B. E. Turban, J. E. Aronson, and T. Liang, Decision Support System and Intelegent System, 7th Ed. Ji. Yogyakarta: Penerbit Andi Yogyakarta, 2005.

D. T. Larose, Discovering Knowledge in Data An Introduction to Data Mining. Canada: Published simultaneously in Canada, 2005.

H. N. Ahmad, V. Suhartono, and I. N. Dewi, “Penentuan Tingkat Kelulusan Tepat Waktu Mahasiswa Stmik Subang Menggunakan Algoritma C4.5,” J. Teknol. Inf., vol. 13, no. 1, pp. 46–56, 2017.

H. Willa Dhany and F. Izhari, “Analisis Algorithms Support Vector Machine Dengan Naive Bayes Kernel Pada Klasifikasi Data,” vol. 6, pp. 595–598, 2019.

D. Xhemali, C. J. Hinde, and R. G. Stone, “Naive Bayes vs. Decision Trees vs. Neural Networks in the Classification of Training Web Pages,” Int. J. Comput. Sci., vol. 4, no. 1, pp. 16–23, 2009, [Online]. Available: http://cogprints.org/6708/.

H. Hermanto, A. Mustopa, and A. Y. Kuntoro, “Algoritma Klasifikasi Naive Bayes Dan Support Vector Machine Dalam Layanan Komplain Mahasiswa,” JITK (Jurnal Ilmu Pengetah. dan Teknol. Komputer), vol. 5, no. 2, pp. 211–220, 2020, doi: 10.33480/jitk.v5i2.1181.

A. Bimantara and T. A. Dina, “Klasifikasi Web Berbahaya Menggunakan Metode Logistic Regression,” Annu. Res. Semin., vol. 4, no. 1, pp. 173–177, 2019.

R. D. Tobias, “Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to The Annals of Statistics. ® www.jstor.org,” Ann. Stat., vol. 14, no. 2, pp. 590–606, 1986.

D. G. Kleinbaum, Modeling Strategy Guidelines. 1994.

S. Y. dan N. emiliyawati Nugroho, “Sistem Klasifikasi Variabel Tingkat Penerimaan Konsumen Terhadap Mobil Menggunakan Metode Random Forest,” J. Tek. Elektro, vol. 9, no. 1, pp. 24–29, 2017, doi: 10.15294/jte.v9i1.10452.

K. Schouten, F. Frasincar, R. Dekker, and M. Riezebos, “Heracles: A framework for developing and evaluating text mining algorithms,” Expert Syst. Appl., vol. 127, pp. 68–84, 2019, doi: 10.1016/j.eswa.2019.03.005.


Full Text: PDF

Article Metrics

Abstract View : 30 times
PDF Download : 1 times

Refbacks

  • There are currently no refbacks.