DECISION SUPPORT SYSTEM FOR LECTURERS ACHIEVING USING ALGORITHM C.45 (STUDY: STIT PRINGSEWU LAMPUNG)

Fauzi Fauzi(1), Wulandari Wulandari(2), Muhammad Muslihudin(3),


(1) Prodi Sistem Informasi, STMIK Pringsewu
(2) Prodi Sistem Informasi, STMIK Pringsewu
(3) Prodi Sistem Informasi, STMIK Pringsewu
Corresponding Author

Abstract


A lecturer is one of the essential components of a higher education system. Roles, duties, and responsibilities are very important in realizing national education, namely educating the nation's life, improving the quality of Indonesian people, which includes the quality of faith/piety, noble morals, and mastery of science, technology, and art, as well as realizing an advanced, fair, and advanced Indonesian society. prosperous, and civilized. Law Number 14 of 2005 concerning Teachers and Lecturers, 4 competencies must be possessed as a lecturer in carrying out the task of the Tridharma of Higher Education. The four competencies include pedagogic, professional, personality, and social. These four competencies are indicators that show the performance of lecturers as educators and teachers. In improving the quality of education at STIT Pringsewu, qualified lecturers are needed. The selection of outstanding lecturers will be one of the supporters in improving the quality at STIT Pringsewu. The algorithm C 4.5 method is one of the methods for making a decision tree based on the training data provided in determining the outstanding lecturers of STIT Pringsewu as many as 20 lecturers. From the results of data testing using the rapid manner tool, it was found that 4 people who got the criteria deserved an award as outstanding lecturers.


References


M. A. Sembiring, M. Fitri, L. Sibuea, A. Sapta, P. Studi, dan S. Informasi, “Analisa Kinerja Algoritma c.45 Dalam Memprediksi Hasil Belajar,” J. Sci. Soc. Res., vol. 1, no. 1, hal. 73–79, 2018.

K. Rismayanti, Fera Damayanti, “Penerapan Data Mining Algoritma C4.55 Dalam Menentukan Rekam Jejak Kinerja Dosen STT Harapan Medan,” J. Penelit. Tek. Inform., vol. 3, no. 1, hal. 99–104, 2018.

H. K. Novyana Arista, Martaleli Bettiza, “Penerapan Algoritma ID3 Dan C45 Dalam Menemukan Hubungan Data Awal Masuk Mahasiswa Dengan Prestasi Akademik,” 2012.

M. Muslihudin dan M. Amrullah, “Model Dss Untuk Mengetahui Tingkat Bahaya Asap Kendaraan Menggunakan Metode Fuzzy Multiple Attribute Decision Making (FMADM),” J. TAM ( Technol. Accept. Model ), vol. 6, no. 1, hal. 9–14, 2016.

E. Turban, J. E. Aronson, dan T.-P. Liang, Decision Support Systems and Intelligent Systems, 7th ed. Prentice Hall, 2004.

E. Turban, R. Sharda, dan D. Delen, Decision Support and Business Intelligence Systems. Chapter 6 Artificial Neural Networks for Data Mining, vol. 8th. 2007.

E. Turban, J. E. Aronson, dan T.-P. Liang, “Decision Support Systems and Intelligent Systems,” Decis. Support Syst. Intell. Syst., vol. 7, hal. 867, 2007.

D. A. C, D. A. Baskoro, L. Ambarwati, dan I. W. S. Wicaksana, Belajar Data Mining dengan RapidMiner. 2013.

T. A. Muhammad Husni Rifqo, “Implementasi Algoritma C4.5 Untuk Menentukan Calon Debitur Dengan Mengukur Tingkat Risiko Kredit Pada Bank Bri Cabang Curup,” J. Pseudocode, vol. 3, no. 2, hal. 83–90, 2016.

C. J. Mantas dan J. Abellán, “Credal-C4.5: Decision tree based on imprecise probabilities to classify noisy data,” Expert Syst. Appl., vol. 41, no. 10, 2014.

N. N. Nandang Iriadi, “Kajian Penerapan Metode Klasifikasi Data Mining Algoritma C4.5 Untuk Prediksi Kelayakan Kredit Pada Bank Mayapada Jakarta,” J. Tek. Komput. AMIK BSI, vol. 2, no. 1, hal. 132–137, 2016.

Undang-Undang RI, “Undang-undang Republik Indonesia Nomor 14 Tahun 2005 tentang Guru dan Dosen,” Undang. RI, hal. 54, 2005.

Undang-Undang RI, “Undang-Undang Republik Indonesia Nomor 12 Tahun 2012 tentang Pendidikan Tinggi,” Undang. Pendidik. TINGGI, hal. 1–97, 2012.


Full Text: PDF

Article Metrics

Abstract View : 117 times
PDF Download : 34 times

Refbacks

  • There are currently no refbacks.