Frequenly Ask Question (FAQ) Chatbot for New Student Admission System Using Natural Language Processing at Politeknik Aisyiyah Pontianak

Safri Adam(1), Eliyana Lulianthy(2),


(1) Politeknik Aisiyiyah Pontianak
(2) Politeknik Aisyiyah Pontianak
Corresponding Author

Abstract


CS (customer service) is a crucial part in an agency that deals with customers, including universities. Especially on the part of the new student admissions committee. However, the ability of CS handled by humans is very limited. In addition, the questions asked are often repeated. So we need an AI-based chatbot (Artificial intelligence) to answer questions from prospective new students. The purpose of this research is to design and build a chatbot system using NLP (natural language processing) to assist the CS of the new student admissions committee at Aisyiyah Polytechnic Pontianak in handling questions from prospective new students. This study uses the NLP method to recognize natural language input from the user. For the weighting of the answers using TF-IDF and cosine similarity. The chatbot system is implemented in the python programming language. The messaging application used is Telegram using the AIOGRAM library and BotFather as a provider of bots on Telegram. This research resulted in a chatbot application using Telegram which was built using the Python programming language and has been trained to recognize the natural language input from the user. From the test results obtained a recall rate of 88% and a precision of 66%. The chatbot application that was built can help the new student admissions committee in serving questions for prospective new students. The evaluation results show that the built chatbot is able to answer questions from users well.

Keywords


Chatbot, NLP, Telegram, TF-IDF, cosine similarity.

References


KEMENRISTEKDIKTI, “Grafik Jumlah Perguruan Tinggi,” PANGKALAN DATA PENDIDIKAN TINGGI, 2020. [Online]. Available: https://forlap.ristekdikti.go.id/perguruantinggi/homegraphpt.

D. S. Hormansyah, Y. P. Utama, P. Studi, T. Informatika, J. T. Informasi, and K. Malang, “APLIKASI CHATBOT BERBASIS WEB PADA SISTEM INFORMASI LAYANAN PUBLIK KESEHATAN DI MALANG DENGAN MENGGUNAKAN METODE TF-IDF,” vol. 4, pp. 224–228, 2018.

E. Tanuwijaya, S. Adam, M. Fatoni, and A. Zainal, “Query Expansion menggunakan Word Embedding dan Pseudo Relevance Feedback,” vol. 5, no. 34, pp. 47–54, 2019.

H. Sa’adah, S. Doni, and Syamsir, “Pemanfaatan Bot Telegram Untuk Pemenuhan Kebutuhan Informasi Sivitas Akademika UIN Imam Bonjol Padang Selama Pandemi Korona,” Tadwin J. Ilmu Perpust. dan Informasi, vol. 1, no. 1, pp. 32–43, 2020.

N. Fransisko Agusning, “Pembangunan Aplikasi Sistem Pendaftaran Poliklinik Rumah Sakit Berbasis Android Pada Rumah Sakit Umum Bina Sehat.,” 2018.

A. Iswandi, “IMPLEMENTASI CHATBOT PADA ORDER MANAGEMENT SYSTEM USAHA MIKRO KECIL MENENGAH,” Universitas Islam Indonesia, 2018.

A. S. A Ferico Octaviansyah, Dedi Darwis, “SISTEM PENCARIAN LOKASI BENGKEL MOBIL RESMI BAHASA ALAMI,” TEKNOINFO, vol. 13, no. 2, pp. 71–77, 2019.

A. Dewi and B. Setiaji, “PEMANFAATAN SENTENCE-SIMILARITY MEASUREMENT UNTUK PROSES PENCARIAN POLA PADA CHATBOT BERBASIS PATTERN-MATCHING,” pp. 39–44, 2014.

R. Singh, M. Paste, N. Shinde, H. Patel, and N. Mishra, “Chatbot using TensorFlow for small Businesses,” 2018 Second Int. Conf. Inven. Commun. Comput. Technol., no. Icicct, pp. 1614–1619, 2018.

C. Anglano, M. Canonico, and M. Guazzone, “Forensic Analysis of Telegram Messenger on Android Smartphone,” Digit. Investig., 2017.

R. T. Wahyuni, D. Prastiyanto, and E. Supraptono, “Penerapan Algoritma Cosine Similarity dan Pembobotan TF-IDF pada Sistem Klasifikasi Dokumen Skripsi,” vol. 9, no. 1, 2017.

A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan, “Cosine Similarity to Determine Similarity Measure : Study Case in Online Essay Assessment,” 2016 4th Int. Conf. Cyber IT Serv. Manag., 2016.

B. Li and L. Han, “Distance Weighted Cosine Similarity Measure for Text Classification,” pp. 611–612, 2013.

R. Ludviani and K. Hayati, “Optimasi Pembobotan pada Query Expansion dengan Term Relatedness to Query-Entropy based (TRQE),” J. Buana …, vol. 6, no. 3, pp. 203–212, 2015.

D. Domarco, N. Made, and S. Iswari, “Rancang Bangun Aplikasi Chatbot Sebagai Media Pencarian Informasi Anime Menggunakan Regular Expression Pattern Matching,” Ultimatics, vol. IX, no. 1, pp. 19–24, 2017.


Full Text: PDF

Article Metrics

Abstract View : 133 times
PDF Download : 24 times

Refbacks

  • There are currently no refbacks.